
Theoretical Physics (Statistical Physics)  
Course contents: 

 
Statistical Physics is quantitative study of systems consisting of a large number of interacting
elements, such as the atoms or molecules of a solid, liquid, or gas, or the individual quanta of light
(see photon) making up electromagnetic radiation. Although the nature of each individual element of a
system and the interactions between any pair of elements may both be well understood, the large
number of elements and possible interactions can present an almost overwhelming challenge to the
investigator who seeks to understand the behavior of the system. 
The purpose of the course is to give the descriptions of macroscopic and microscopic features of the
systems by taking advantage of these systems to examine the properties and methods of calculations.
This course provides a comprehensive presentation of the basics of statistical physics. The first part 
explains the essence of statistical physics and how it provides a bridge between microscopic and
macroscopic phenomena, allowing one to derive quantities such as entropy. In the second part,
statistical mechanics is applied to various systems which, although they look different, share the same
mathematical structure. In this way listener can deepen their understanding of statistical physics. The
course also features applications to quantum dynamics, thermodynamics, the Ising model and the 
statistical dynamics of free spins. 
 
Subjects covered by the lectures are 

• Statistical Physics: Is More than Statistical Mechanics. Modeling of Statistical Systems 
• Random Variables: Fundamentals of Probability Theory and Statistics 
• Random Variables in State Space: Classical Statistical Mechanics of Fluids 
• Random Fields: Textures and Classical Statistical Mechanics of Spin Systems 
• Time-Dependent Random Variables: Classical Stochastic Processes 
• Quantum Random Systems 
• Changes of External Conditions 
• Analysis of Statistical Systems. Estimation of Parameters. Signal Analysis: Estimation of 

Spectra 
• Estimators Based on a Probability Distribution for the Parameters 
• Estimating the Parameters of a Hidden Stochastic Model 
• Statistical Tests and Classification Methods 

 
Learning outcomes of the course :  

 
Through a deep understanding of the theory and the realization of a project, the student will be know 
fundamentals of statistical physics and applications of statistical physics to various systems. In 
particular: 

• He will have a deep understanding of notions, concepts of statistical physics and will be able to 
summary, compare and explain them (substances pressure, the macroscopic properties such as 
temperature, due to the microscopic level). 

• He will have a more penetrating insight into models of materials (the ideal gas, Van der Waals 
fluids). 

• He will have a more penetrating insight into statistical mechanics and its basic notions 
(Macroscopic System, Statistics Meaning of Particle Systems, Temperature Interactions, 
Macroscopic Theory and macroscopic measurements, Gibbs Statistical Mechanics, Ensemble 
of Systems, Phase Space, Ensemble Averages, Thermodynamics of Ensemble). 

• He will have a deep understanding of the resolution methods of statistical physics, and will be 
able to summary, compare and explain them (calculate the macroscopic properties of matter by 
making microscopic scale accounts). He will also know their application range. 

• He will be able to describe modern and advanced approaches of statistical physics. 



• He will be able to analyze and to evaluate (justify and criticise) these methods. 
• He will be able to analyze new problems. 

 
Prerequisites and co-requisites/ Recommended optional programme components :  

 
Basic knowledge in 

• Basic Concepts of Probability 
• Differential Equations 
• Differential and Integral Calculations 
• Elasticity Theory 
• Fluid Mechanics 
• Solid Mechanics 

 
 
Planned learning activities and teaching methods :  

 
Exercises with professor assistance and personal project. 
 

Mode of delivery (face-to-face ; distance-learning) :  
 

Face-to-Face 
 
Required readings :  

 
• Honerkamp J. Statistical Physics. An Advanced Approach with Applications. Springer, 2012. 

553. 
• Joshioka D. Statistical Physics. An introduction. Springer, 2007. 208 p. 
• Helrich C.S. Modern Thermodynamics with Statistical Mechanics. Springer, 2009. 
• Reif F. Statistical Physics. Berkeley Physics Series. Volume V. 
• Sears Salinger Thermodynamics Kinetic Theory and Statistical Thermodynamics.  
• Kondepudi D., Prigogine I. Modern Termodynamics. Chichester: John Wiley & Sons. 1999.  

 
Assessment methods and criteria :  

 
Evaluation is based on the realization of a project related to the use / development of methods specific 
to statistical physics and on an examination. 
The examination is based on the whole content of the class. Problems similar to the ones studied 
during the classes, and new problems will be part of the questions. Justification using the theoretical 
content is also asked. 
Participation to the examination and achievement of the project are mandatory. 
 
Detailed Syllabus 
week SUBJECTS 
 Theoretical Subjects Theoretical Laboratory 

(Seminar) Work 
1 Fluctuations in case of equilibrium, 

irreversibility and steady state approach 
  

2 Determining the properties of 
equilibrium, heat and temperature, 
analog indicator, problem solutions 

  



3 Communities of statistics, probability 
relations between simple, binomial 
distribution 

  

4 Average values, average values for a 
spin system account 

  

5 Status of a system to be specified, 
statistics community 

  

6 Predictions statistics, probability 
calculations 

  

7 Number of status of a macroscopic 
system Girileilir, equilibrium bond terms 
and irreversibility 

  

8 Colloquium    
9 Interactions between systems, the 

solution of the problems 
  

10 Distribution of energy between 
macroscopic systems, interact approach 
temperature 

  

11 Small heat transport, heat reservoir that 
touch the system, paramagnetism, the 
ideal gas in the average energy and 
pressure 

  

12 Determination of the absolute 
temperature, high and low absolute 
temperatures, work, internal energy, 
entropy 

  

13 Classical approximation, Maxwell’s 
velocity distribution, perfusion and 
molecular bundles 

  

14 The equipartition theorem and its 
applications 

  

15 Heat of solids self, solving problem   
16 Final Exam   
 

Socratic Teaching Method: Class participation is mandatory. Everyone is expected to participate 
in discussions relating to reading materials, homework, exams and lectures. 

Guaranteed Recipe for Success:  
1) Take notes during lecture and sections. 
2) After each lecture but before the next lecture review your notes. Identify the parts you do not 
understand. 
3) Come to each lecture and discussion section with specific questions. 
4) Keep up with the reading so that you have some familiarity with each topic prior to hearing about 
it in the lecture. 
5) Find at least one "partner" in the class with whom you can meet at least once or twice a week to 
discuss materials from the lectures, the reading assignments and the homework. 
6) Take the homework assignment seriously. Do not try to do the whole assignment the night before 
it is due. Some version of the homework questions will appear on the exams. 
 
 
Course Contents 
Theoretical Physics (Statistical Physics)  



1 Statistical Physics: Is More than Statistical Mechanics. Part I Modeling of Statistical 
Systems 
2 Random Variables: Fundamentals of Probability Theory and Statistics 
2.1 Probability and Random Variables 
2.1.1 The Space of Events  
2.1.2 Introduction of Probability  
2.1.3 Random Variables  
2.2 Multivariate Random Variables and Conditional Probabilities 
2.2.1 Multidimensional Random Variables  
2.2.2 Marginal Densities 
2.2.3 Conditional Probabilities and Bayes’ Theorem 
2.3 Moments and Quantiles 
2.3.1 Moments 
2.3.2 Quantiles 
2.4 The Entropy 
2.4.1 Entropy for a Discrete Set of Events 
2.4.2 Entropy for a Continuous Space of Events 
2.4.3 Relative Entropy  
2.5 Computations with Random Variables 
2.5.1 Addition and Multiplication of Random Variables 
2.5.2 Further Important Random Variables  
2.5.3 Limit Theorems 
2.6 Stable Random Variables and Renormalization 
Transformations 
2.6.1 Stable Random Variables 
2.6.2 The Renormalization Transformation  
2.6.3 Stability Analysis 
2.6.4 Scaling Behavior 
2.7 The Large Deviation Property for Sums of Random Variables 
3 Random Variables in State Space: Classical Statistical Mechanics of Fluids  
3.1 The Microcanonical System  
3.2 Systems in Contact  
3.2.1 Thermal Contact  
3.2.2 Systems with Exchange of Volume and Energy 
3.2.3 Systems with Exchange of Particles and Energy 
3.3 Thermodynamic Potentials 
3.4 Susceptibilities 
3.4.1 Heat Capacities 
3.4.2 Isothermal Compressibility 
3.4.3 Isobaric Expansivity 
3.4.4 Isochoric Tension Coefficient and Adiabatic 
Compressibility 
3.4.5 A General Relation Between Response Functions 
3.5 The Equipartition Theorem 
3.6 The Radial Distribution Function 
3.7 Approximation Methods 
3.7.1 The Virial Expansion 
3.7.2 Integral Equations for the Radial Distribution 
Function 
3.7.3 Perturbation Theory 
3.8 The van der Waals Equation  
3.8.1 The Isotherms 
3.8.2 The Maxwell Construction 
3.8.3 Corresponding States 



3.8.4 Critical Exponents 
3.9 Some General Remarks about Phase Transitions 
and Phase Diagrams 
4 Random Fields: Textures and Classical Statistical Mechanics of Spin Systems 
4.1 Discrete Stochastic Fields 
4.1.1 Markov Fields 
4.1.2 Gibbs Fields 
4.1.3 Equivalence of Gibbs and Markov Fields 
4.2 Examples of Markov Random Fields 
4.2.1 Model with Independent Random Variables 
4.2.2 Auto Model 
4.2.3 Multilevel Logistic Model 
4.2.4 Gauss Model 
4.3 Characteristic Quantities of Densities for Random Fields 
4.4 Simple Random Fields 
4.4.1 The White Random Field or the Ideal 
Paramagnetic System 
4.4.2 The One-Dimensional Ising Model 
4.5 Random Fields with Phase Transitions 
4.5.1 The Curie–Weiss Model 
4.5.2 The Mean Field Approximation 
4.5.3 The Two-Dimensional Ising Model 
4.6 The Landau Free Energy 
4.7 The Renormalization Group Method for Random 
Fields and Scaling Laws 
4.7.1 The Renormalization Transformation 
4.7.2 Scaling Laws 
5 Time-Dependent Random Variables: Classical Stochastic Processes 
5.1 Markov Processes 
5.2 The Master Equation 
5.3 Examples of Master Equations 
5.3.1 One-Step Processes 
5.3.2 Chemical Reactions 
5.3.3 Reaction–Diffusion Systems 
5.3.4 Scattering Processes 
5.4 Analytic Solutions of Master Equations 
5.4.1 Equations for the Moments 
5.4.2 The Equation for the Characteristic Function 
5.4.3 Examples 
5.5 Simulation of Stochastic Processes and Fields 
5.6 The Fokker–Planck Equation 
5.6.1 Fokker–Planck Equation with Linear Drift 
Term and Additive Noise  
5.7 The Linear Response Function and the Fluctuation– 
Dissipation Theorem 
5.8 Approximation Methods 
5.8.1 The Ω  Expansion 
5.8.2 The One-Particle Picture 
5.9 More General Stochastic Processes 
5.9.1 Self-Similar Processes 
5.9.2 Fractal Brownian Motion 
5.9.3 Stable Levy Processes 
5.9.4 Autoregressive Processes 
6 Quantum Random Systems  



6.1 Quantum-Mechanical Description of Statistical Systems 
6.2 Ideal Quantum Systems: General Considerations 
6.2.1 Expansion in the Classical Regime 
6.2.2 First Quantum-Mechanical Correction Term 
6.2.3 Relations Between the Thermodynamic 
Potential and Other System Variables 
6.3 The Ideal Fermi Gas 
6.3.1 The Fermi–Dirac Distribution 
6.3.2 Determination of the System Variables at Low 
Temperatures 
6.3.3 Applications of the Fermi–Dirac Distribution 
6.4 The Ideal Bose Gas 
6.4.1 Particle Number and the Bose–Einstein Distribution 
6.4.2 Bose–Einstein Condensation 
6.4.3 Pressure 
6.4.4 Energy and Specific Heat 
6.4.5 Entropy 
6.4.6 Applications of Bose Statistics 
6.5 The Photon Gas and Black Body Radiation 
6.5.1 The Kirchhoff  Law 
6.5.2 The Stefan–Boltzmann Law 
6.5.3 The Pressure of Light 
6.5.4 The Total Radiative Power of the Sun 
6.5.5 The Cosmic Background Radiation 
6.6 Lattice Vibrations in Solids: The Phonon Gas 
6.7 Systems with Internal Degrees of Freedom: Ideal 
Gases of Molecules 
6.8 Magnetic Properties of Fermi Systems 
6.8.1 Diamagnetism 
6.8.2 Paramagnetism 
6.9 Quasi-Particles 
6.9.1 Models for the Magnetic Properties of Solids 
6.9.2 Superfluidity 
7 Changes of External Conditions 
7.1 Reversible State Transformations, Heat, and Work  
7.1.1 Finite Transformations of State 
7.2 Cyclic Processes 
7.3 Energy and Relative Entropy 
7.4 Time Dependence of Statistical Systems  
Analysis of Statistical Systems 
8 Estimation of Parameters 
8.1 Samples and Estimators 
8.1.1 Monte Carlo Integration 
8.2 Confidence Intervals 
8.3 Propagation of Errors 
8.3.1 Application 
8.4 The Maximum Likelihood Estimator 
8.5 The Least-Squares Estimator  
9 Signal Analysis: Estimation of Spectra 
9.1 The Spectrum of a Stochastic Process 
9.2 The Fourier Transform of a Time Series and the Periodogram 
9.3 Filters 
9.3.1 Filters and Transfer Functions 
9.3.2 Filter Design 



9.4 Consistent Estimation of Spectra 
9.5 Cross-Spectral Analysis 
9.6 Frequency Distributions for Nonstationary Time Series 
9.7 Filter Banks and Discrete Wavelet Transformations 
9.7.1 Examples of Filter Banks 
9.8 Wavelets 
9.8.1 Wavelets as Base Functions in Function Spaces 
9.8.2 Wavelets and Filter Banks 
9.8.3 Solutions of the Dilation Equation 
10 Estimators Based on a Probability Distribution for the Parameters 
10.1 Bayesian Estimator and Maximum a Posteriori Estimator 
10.2 Marginalization of Nuisance Parameters 
10.3 Numerical Methods for Bayesian Estimators 
11 Identification of StochasticModels from Observations 
11.1 Parameter Identification for Autoregressive Processes 
11.2 Granger Causality 
11.2.1 Granger Causality in the Time Domain 
11.2.2 Granger-Causality in the Frequency Domain 
11.3 Hidden Systems 
11.4 The Maximum a Posteriori Estimator for the Inverse Problem 
11.4.1 The Least Squares Estimator as a Special MAP Estimator 
11.4.2 Strategies for Choosing the Regularization Parameter 
11.4.3 The Regularization Method 
11.4.4 Examples of the Estimation of a Distribution 
Function by a Regularization Method 
11.5 Estimating the Realization of a Hidden Process 
11.5.1 The Viterbi Algorithm 
11.5.2 The Kalman Filter 
11.5.3 The Unscented Kalman Filter 
11.5.4 The Dual Kalman Filter 
12 Estimating the Parameters of a Hidden Stochastic Model 
12.1 The ExpectationMaximization Method (EM Method) 
12.2 Estimating the Parameters of a Hidden Markov Model 
12.2.1 The Forward Algorithm 
12.2.2 The Backward Algorithm 
12.2.3 The Estimation Formulas 
12.3 Estimating the Parameters in a State Space Model 
13 Statistical Tests and Classification Methods 
13.1 General Comments Concerning Statistical Tests 
13.1.1 Test Quantity and Significance Level  
13.1.2 Empirical Moments for a Test Quantity: The Bootstrap Method 
13.1.3 The Power of a Test 
13.2 Some Useful Tests  
13.2.1 The z- and the t-Test  
13.2.2 Test for the Equality of the Variances of Two 
Sets of Measurements, the F -Test 
13.2.3 The _2-Test 
13.2.4 The Kolmogorov–Smirnov Test  
13.2.5 The F-Test for Least-Squares Estimators 
13.2.6 The Likelihood-Ratio Test 
13.3 Classification Methods 
13.3.1 Classifiers 
13.3.2 Estimation of Parameters that Arise in Classifiers 
13.3.3 Automatic Classification (Cluster Analysis)  



 
Further Reading 
1. Landau L. D., Lifshitz E. M. (1980) [1976]. Statistical Physics. 5 (3 ed.). Oxford: Pergamon 
Press. ISBN 0-7506-3372-7. Translated by J.B. Sykes and M.J. Kearsley 
2. Ebeling W.; Sokolov I. M. (2005). Statistical Thermodynamics and Stochastic Theory of 
Nonequilibrium Systems. World Scientific Publishing Co. Pte. Ltd.. pp.3–12. ISBN 978-90-277-
1674-3. (section 1.2) 
3. Mahon Basil (2003).The Man Who Changed Everything – the Life of James Clerk Maxwell. 
Hoboken, NJ: Wiley. ISBN 0-470-86171-1. 
4. Dill, Ken; Bromberg, Sarina (2003). Molecular Driving Forces. Garland Science. ISBN 0-8153-
2051-5. 
5. Entropy, Order Parameters, and Complexity: A Broad View of Statistical Physics, J. P. Sethna, 
Cornell University, 2004. 
6. Schrodinger, Erwin (1946). Statistical Thermodynamics. Dover Publications, Inc.. ISBN 0-486-
66101-6. 
7. Ben-Naim, Arieh (2007). Statistical Thermodynamics Based on Information. ISBN 978-981-270-
707-9. 
 
 
Statistical Physics of Fields 
Problems 
1. The binary alloy: A binary alloy consists of AN  atoms of atom A and BN  atoms of type B. The 
atoms form a simple cubic lattice, each interacting only with its six nearest neighbors. Assume an 
interactive energy of  ( 0)J J− >  between like neighbors A-A and B-B, but a repulsive energy 
of J+  for an A-B pair. 

a) What is the minimum energy configuration, or the state of the system at zero temperature? 
b) Estimate the total interaction energy assuming that the atoms are randomly distributed among 
the N sites; i.e. each site is occupied independently with probabilities /A Ap N N=  and 

/B Bp N N= . 
c) Estimate the mixing entropy of the alloy with the same approximation. Assume 1, >>BA NN . 

d) Using the above, obtain a free energy function )(xF , where ( ) /A Bx N N N= − . Expand 
)(xF  to the fourth order in x and show that the requirement of convexity of )(xF  breaks down 

below a critical temperature cT . For the remainder of this problem use the expansion obtained 
in d) in place of the full function )(xF . 
e) Sketch )(xF  for cTT > , cTT =  and for cTT < . For cTT <  there is a range of compositions 

)(Txx sp<  where )(xF  is not convex and hence the composition is locally unstable. Find 

)(Txsp . 
f) The alloy globally minimizes its free energy by separating into A rich and B rich phases of 
compositions )(Txeq± , where )(Txeq  minimizes the function )(xF . Find )(Txeq . 
g) In the ( )xT ,  plane sketch the phase separation boundary )(Txeq± ; and the so called 
spinoidal line )(Txsp± . (The spinoidal line indicates onset of metastability and hysteresis 
effects). 
2. The Ising model of magnetism: The local environment of a an electron in a crystal sometimes 
forces its spin to stay parallel or anti-parallel to a given lattice direction. As a model of 
magnetism in such materials we denote the direction of the spin by a single variable 1iσ = ±  

(an Ising spin)/ The energy of a configuration { }iσ  of spin is then given by 



, 1

1
2

N

ij i j i
i j i

J hσ σ σ
=

Η = −∑ ∑  

where h  is an external magnetic field and ijJ  is the interaction energy between spins at sites I 

and j. 
a) For N  spins we make the drastic approximation that the interaction between all spins is the 

same, and /ijJ J N= −  (the equivalent neighbor model)/ Show that the energy can be 

written as 2( , ) / 2E M h N Jm hm = − +   with a magnetization 

1 / / .N
iim N M Nσ== =∑  

b) B) Show that the partition function ( ){ }( , ) exp
i

Z h T Hσ β= −∑  can be rewritten as 

[ ]exp ( , )MZ F m hβ= −∑  with ( , )F m h  easily calculated by analogy to problem 

(1). For the remainder of the problem work only with ( , )F m h  expanded to 4th order in 
m . 


